

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: ADVANCED FLUID DYNAMICS

(20ME3102)

Year & Sem : I-M.Tech & I-Sem

Course & Branch: M.Tech - TE

Regulation: R20

UNIT –IGoverning equations in Fluid Dynamics

1	How would you explain the	following:	[L1][CO1]	[12M]
	(i)	Fluids		
	(ii)	Fluid statistics		
	(iii)	Fluid dynamics		
	(iv)	Time line		
	(v)	Streak line		
	(vi)	Newtonian Fluids		
2			[L1][CO1]	[12M]
	How would you describe the	e following:		
	(i)	Bernoulli's equation		
	(ii)	Three dimensional flow		
	(iii)	Laminar flow		
	(iv)	Viscous flow		
	(v)	Steady flow		
3			[L2][CO1]	[12M]
	Outline the derivation of approach	continuity equation by using integral and differential	[22][001]	. ,
4		derivation of momentum equation by using integral and	[L5][CO1]	[12M]
5	Elaborate three of the follow	ving:	[L5][CO1]	[12M]
	(i)	Conservative body forces		
	(ii)	Euler equation		
	(iii)	Vorticity transport equation.		
	(iv)	Strokes equation		
6	Explain in detail about the b	oundary layer equation	[L5][CO1]	[12M]

Course Code: 20ME3102

R20

7	Explain about the parallel flow in straight channel with neat sketch.	[L5][CO1]	[12M]
8	How would you describe the Couette flow with a neat sketch?	[L1][CO1]	[12M]
9	Discuss in detail about the strokes flow past a sphere.	[L5][CO1]	[12M]
10	Outline in detail about the strokes flow past a cylinder.	[L2][CO1]	[12M]

UNIT –IIPotential Flow

1	Prove Kelvin's theorem with the help of circulation piece wise continuous function	[L6][CO1]	[12M]
	and conservative body forces definitions.		
2	Discuss in detail about the irrotational flow.	[L5[CO1]	[12M]
3	Outline the stream function / velocity potential approach.	[L2][CO1]	[12M]
4	What are the application of empirical relation to various geometries for laminar and	[L1][CO1]	[12M]
	turbulent flows and explain in detail.		
5	Outline in detail about the Reynolds's Analogy.	[L2][CO1]	[12M]
6	Outline in detail about the Colborn Analogy.	[L2][CO1]	[12M]
7	Compare the parallel flow and internal flow.	[L2][CO1]	[12M]
8	Write in detail about the use of empirical correlations	[L1][CO1]	[12M]
9	Prove the various empirical equations available to predict natural convection heat	[L6][CO1]	[12M]
	transfer coefficient.		
10	With a simple sketch discuss the creeping flows.	[L5][CO1]	[12M]

UNIT -III

Laminar Boundary layers

	Lammar Doundary layers			
1	Discuss in detail about the laminar flow.	[L5][CO1]	[12M]	
2	Evaluate in detail about the laminar boundary layers.	[L6][CO1]	[12M]	
3	Prove the boundary layer equation.	[L6][CO1]	[12M]	
4	Explain in detail about the boundary layer equation.	[L1][CO1]	[12M]	
5	Elucidate the mathematical anology of high Reynolds number flow near a solid	[L1][CO1]	[12M]	
	boundary.			
6	Briefly explain the Blasius flow over a flat plate.	[L1][CO1]	[12M]	
7	Discuss shortly about the wall shear stress.	[L5][CO1]	[12M]	
8	Discuss shortly about the boundary –layer thickness.	[L5][CO1]	[12M]	
9	Explain about the boundary layer with non-zero pressure gradient.	[L1][CO1]	[12M]	
10	How would you prove the momentum integral equation for boundary layer?	[L6][CO1]	[12M]	

UNIT -IV

Turbulent Flow

1	a) Define turbulent flow.	[L1][CO1]	[12M]
	b) Explain the characteristics of turbulent flow.		
2	Explain the characteristics of turbulent flow.	[L1][CO1]	[12M]
3	Explain briefly about the laminar turbulent transition.	[L1][CO1]	[12M]
4	Derive the governing equation for turbulent flow.	[L5][CO1]	[12M]
5	Derive the governing equation for shear stress models.	[L5][CO1]	[12M]
6	Briefly explain about the time mean motion and fluctuations.	[L1][CO1]	[12M]
7	Derive the governing equation for velocity distribution.	[L5][CO1]	[12M]
8	Shortly discuss about the following:	[L5][CO1]	[12M]
	(i) Time mean motion		
	(ii) Fluctuations		
	(iii) Turbulent flow		
	(iv) Velocity distribution		
9	Prove the universal velocity profile on a flat plate and rectangular plate.	[L6][CO1]	[12M]
10	Describe the universal velocity distribution for circular pipes and friction factor in	[L5][CO1]	[12M]
	detail.	1	l

UNIT -V

Experimental Techniques

	——————————————————————————————————————		
1	Evaluate the role of experiments in engineering with suitable examples.	[L6][CO1]	[12M]
2	Discuss in detail about the layout of fluid flow experiments with suitable sketch.	[L5][CO1]	[12M]
3	Discuss about the sources of error in measurements.	[L5][CO1]	[12M]
4	Explain the importance of data analysis with some application.	[L1][CO1]	[12M]
5	Discus the design of experiments with some suitable application.	[L5][CO1]	[12M]
6	Outline in detail about the review of probes and transducers	[L5][CO1]	[12M]
7	Explain the function of hot wire anemometry with neat sketch.	[L1][CO1]	[12M]
8	Describe the working principle of Laser Doppler Velocimetry with neat sketch.	[L1][CO1]	[12M]
9	Explain the working principle of Particle Image Velocimetry with neat diagram.	[L1][CO1]	[12M]
10	Describe the various significant properties of fluid.	[L1][CO1]	[12M]

PREPARED BY: D.KRISHNAIAH